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A B S T R A C T   

We describe the nonlocal heat transport across a thin film in contact with two thermal baths using discrete 
variable model. The effective thermal conductivities, the boundary temperature jumps, the steady-state heat flux, 
and the internal temperature gradient are calculated analytically as functions of the film size and the boundary 
resistances. As the system size decreases, all the parameters demonstrate the transition from diffusive (Fourier) 
heat conduction when the scattering occurs mainly inside the film to ballistic transport when scattering occurs at 
the boundaries, while inside the film there is no scattering and the temperature profile is flat. We show that when 
the boundary resistance increases, the temperature profile inside the film also tends to be flat, but in this case the 
scattering, though small, occurs inside the film. The predicted effective thermal conductivity is consistent with 
classical continuous theories and available experimental data.   

1. Introduction 

Heat transfer mechanism at the nanoscale level has been of signifi-
cant fundamental interest in the recent decade due to its practical 
importance for a large number of applications, ranging from thermo-
electric devices for energy conversion to heat dissipation in thermal 
management [1–3]. Classical heat transfer description is based on the 
Fourier law q = − λ∇T, where q is the heat flux, λ the thermal con-
ductivity and ∇Tthe temperature gradient. Fourier law is local in space 
and is valid on a relatively large scale, which significantly exceeds the 
mean free path (MFP) of heat carriers. However, on the nanoscale level 
when the characteristic length is of the ordered of the MFP, the classical 
continuum theories reach their limits and fail to describe heat transport 
[1–16]. The recognition that a more detailed theoretical understanding 
of nanoscale heat transport than achievable using the Fourier law has 
lead to the development of approaches based on numerical solutions of 
the Boltzmann transport equation [2,3,9,17], microscopic Hamiltonian 
description of dissipative particle dynamics [8], Monte Carlo simula-
tions [18,19], and molecular dynamic simulations (MD) [20–23]. The 
ballistic-diffusive approach [17–19,25–31], which divides the phonon 
intensity into ballistic and diffusive components, is also based on the 
Boltzmann transport equation. However, the approaches listed are 

usually cumbersome and computationally expensive methods are 
needed to obtain their solutions; thus, looking for simpler phenomeno-
logical models leading to reasonable predictions may be useful from the 
practical point of view as they offer a preliminary results, which may be 
refined later by means of cumbersome but more precise methods after 
having in a fast and efficient way the most promising physical conditions 
for the device operation. One of the most effective and relatively simple 
approaches to study heat transport on multi-length and -time scale 
including low-dimensional and sub-continuum regimes is the discrete 
variable model (DVM), which discretizes the transport process in space 
and time [4,12–14,32–36]. The DVM takes into account the fact that 
heat transport is an inherently nonlocal phenomenon because the heat 
flux at a point x depends on the history of the heat carriers reaching the 
point at time t and the carriers arrive at the point x having brought the 
energy from other points in space. The DVM provides a relatively simple 
but physically consistent framework of transport phenomena, which 
holds arbitrarily far from equilibrium and which is valid at the level of 
nano space scale. The steady-state heat transport across a nano film has 
been studied by the DVM with relatively simple boundary conditions 
between the film and the thermal baths [12]. The study correctly de-
scribes the temperature jumps at the boundaries, the temperature 
gradient inside the film, the heat flux and the effective thermal 
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conductivities as functions of the film size. In this paper we analyze heat 
transport across a nano film with more general choice of coupling be-
tween the film and thermal reservoirs. 

2. Model and results 

2.1. Temperature jumps at the boundaries 

Let us consider 1D heat conducting film divided into N discrete layers 
of equal size h parallel to the walls of thermal reservoirs. The temper-
atures of these discrete cells are determined by the discrete transfer 
equation [12,32–36]: 

Tn,j+1 =
1
2
(
Tn+1,j + Tn− 1,j

)
(1)  

where Tn,j is the temperature of a discrete layer n at a discrete time 
moment j. For sake of simplicity the corresponding equations for the 
heat flux are presented for steady-state regime 

q1,B1 = − αB1(T1 − TB1) (2)  

qn+1,n = − Cv(Tn+1 − Tn)
/

2 (3)  

qB2,N = − αB2(TB2 − TN) (4)  

where q1,B1 is the heat fluxes between the left reservoir with temperature 
TB1and the fist discrete layer of the system, qn+1,n is the heat flux be-
tween the discrete layers n and n+ 1inside the system, qB2,N is the heat 
flux between the right reservoir with temperature TB2 (TB2 > TB1) and 
the last discrete layer n = N, N is the number of the discrete layers (see 
Fig. 1), α is the heat exchange coefficients between the neighboring 
subsystems, αB2 is the heat exchange coefficients between the system 
and the right reservoir, α1,B1 is the heat exchange coefficients between 
the system and the left reservoirs (thermal conductance per unit cross- 
sectional area), Cis the specific heat, vis the group velocity of the heat 
carriers. Eqs. (2) and (4) describe the heat flux across the boundary 
between the regions with different thermal transport properties. The 
dissimilarity of the thermal transport properties of the regions in ther-
mal contact leads to the boundary thermal resistance and boundary 
temperature jump [2,3,25]. The inverse of the heat exchange co-
efficients RK = 1/α is also referred to as Kapitza resistance [2,3,25]. The 
definition for the heat current, Eq. (3), is a consequence of the continuity 
equation, which could be understood by noting that CvTn+1/ 2 is simply 
the rate of energy flow from subsystem n + 1 to subsystem n, and vice 

versa, and thus Eq. (3) describes the net energy flow between subsystems 
n + 1 and n at the time moment t per unit time, i.e., the heat current. 
Assuming that the energy exchange between the neighboring sub-
systems is ballistic and the contacts between them are reflectionless, the 
heat exchange coefficient in Eq. (3) takes the form α = Cv/2 [12]. 

The temperature difference between the thermal reservoirs ΔT =

TB2 − TB1 can be expressed as 

TB2 − TB1 = (N − 1)δT + δTB2 + δTB1 (5)  

where δT2 and δT1 are the temperature jumps at the right and the left 
boundaries, respectively, δT is the temperature jump between the 
neighboring discrete subsystems. After some algebra, Eqs. (1)–(5) give 

δT =
TB2 − TB1

1
α2
+ 1

α1
− 1 + N

(6)  

where α1 = 2αB1/Cv and α2 = 2αB2/Cv are the nondimensional thermal 
conductances the left and the right boundary, respectively. In terms of 
the thermal conductivity λ = Cvh/2, the conductances take the form 
α1 = hαB1/λ and α2 = hαB2/λ, respectively. 

The temperature jumps at the boundaries are given by 

δTB1 = δT /α1 (7)  

δTB2 = δT /α2 (8) 

In the Fourier regime N→∞ and Eqs. (6)–(8) give δTB1 = δTB2 = 0, as 
expected. In the ballistic limit δTB1 + δTB2 = TB2 − TB1. In terms of the 
thermal resistances, Eqs. (6)–(8) can be rewritten as 

δT =
TB2 − TB1

Reff + N
(9)  

δTB1 =
(TB2 − TB1)R1

Reff + N
(10)  

δTB2 =
(TB2 − TB1)R2

Reff + N
(11)  

where Reff is the effective thermal resistance given by 

Reff =
1
α1

+
1
α2

− 1 (12)  

R1 = Cv/2αB1 and R2 = Cv/2αB2 are the nondimensional thermal re-
sistances of the left and the right boundary, respectively. In terms of the 
thermal conductivity λ = Cvh/2, the conductances take the form R1 =

λ/hαB1 and R2 = λ/hαB2, respectively. As the system size N increases, the 
temperature jumps decrease and tend to zero in the classical Fourier 
limit N→∞ when the heat transport is purely diffusive. When the system 
size N decreases, the ballistic component begins to play an important 
role, which leads to nonzero temperature jump at the boundaries. Tak-
ing into account that Reff = R1 + R2 − 1 (see Eq. (12)) and summing up 
Eqs. (10) and (11), we obtain 

δTB1 + δTB2 =
(TB2 − TB1)(R1 + R2)

Reff + N
(13) 

In the ballistic limit, which in the DVM is reached at N = 1, Eq. (13) 
gives (δTB1 + δTB2) = (TB2 − TB1). This implies that in the ballistic limit 
the scattering occurs only at the boundaries. 

If R1 ∕= R2, Eqs. (10) and (11) give, δTB1 ∕= δTB2, which implies that 
the temperature profile inside the film is asymmetric. To discuss the 
asymmetry in more detail, we introduce the continuous temperature 
profile inside the film T(x)as follows 

T(x)= TB1 + δTB1 + x(TB2 − TB1 − δTB1 − δTB2)/L (14)  

where x is the continuous coordinate (+ 0 < x < L − 0). Note that Eq. 

nnq

NBq

Bq

N=4
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Fig. 1. Schematic representation of the model. The film, which consists of N =

4 layers, is placed between two thermal reservoirs with temperatures TB1 and 
TB2, respectively. q1,B1 is the heat fluxes between the left reservoir and the fist 
discrete layer n = 1, qn+1,n is the heat flux between the discrete layers n and n+
1, qB2,N is the heat flux between the right reservoir with temperature and the 
last discrete layer N = 4. 
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(14) gives the temperature profile inside the film with T(x) = TB1+ δTB1 
at x→ + 0 and T(x) = TB2 − δTB2 at x→L − 0, whereas TB1 = T( − 0) and 
TB2 = T(L + 0), which implies temperature jumps at the boundaries in 
accordance with Eqs. (10) and (11). The situation is illustrated in Fig. 2, 
which depicts typical profiles of the nondimensional temperature θ(ξ) =
(T(x) − TB1)/(TB2 − TB1) as a function of the nondimensional coordinate 
ξ = x/L for different values of the boundary resistances. When N→ ∞, 
Eqs. (10) and (11) give that δTB1 = δTB2→0 independently of the 
boundary resistance, which corresponds to the classical Fourier diffusive 
limit when scattering occurs mainly in the bulk system, while the 
boundary scattering is negligible (see the dashed line in Fig. 2). When N 
decreases, the boundary scattering begins to play an important role and 
the boundary temperature jumps appear. If R1 = R2, Eqs. (10) and (11) 
give δTB1 = δTB2, i.e. the temperature profile is symmetric (see dash- 
dotted curve in Fig. 2). In such a case the scattering occurs both at the 
boundaries and inside the system, i.e. the transport is both ballistic and 
diffusive. When R1 ∕= R2, the temperature jumps at the boundaries are 
different (δT1 ∕= δT2) and the temperature profile is asymmetric (see 
solid line with δTB1 > δTB2 and grey line with δTB1 < δTB2 in Fig. 2). 
Note that the temperature gradients inside the film for temperature 
profiles depicted by solid and dash-dotted lines in Fig. 2 are the same, 
while the temperature jumps at the boundaries are different. If R2→ ∞, 
which implies that the right boundary is adiabatically isolated, Eqs. 
9–11 give δT→0 and δT1→0, whereas δT2→(TB2 − TB1). In such a case, 
the steady-state heat flux through the film is small and the temperature 
is close to TB1 (see grey curve in Fig. 2). The scattering occurs mainly at 
the right boundary, which is manifested by high temperature jump at the 
right boundary in comparison with the temperature jump the left 
boundary δTB2 >> δTB1 and small temperature gradient inside the film. 
In the opposite limit of small thermal resistance RB2→0, the corre-
sponding temperature jump tends to zero and scattering occurs mainly 
in the bulk system and at the left boundary. Thus the asymmetry of the 
temperature profile (solid and grey lines in Fig. 2) arises due to different 
values of the boundary resistance between the system and the reservoirs. 

Fig. 3 shows the nondimensional temperature θ(ξ) as a function of 
the nondimensional coordinate ξ = x/L at R1/R2 = 2 and for different 
values of the system size N = L/h. When N→∞, the scattering occurs 

only inside the film and one obtains the symmetrical Fourier profile with 
δTB2 = δTB1 = 0 (see dashed line in Fig. 3). In the opposite limit, the 
scattering occurs only at the boundaries, while the temperature prolife 
inside the film is flat (see horizontal dashed line in Fig. 3 and compare it 
with horizontal dotted line, which depicts ballistic temperature profile 
for R1 = R2). At the intermediate values of the system size N, the scat-
tering occurs both at the boundaries and inside the film, which is 
manifested by nonzero temperature jumps at the boundaries 
(δTB2 ∕= δTB1) and nonzero temperature gradient inside the film (see 
solid lines in Fig. 3). 

In the center of the film at x/L = 1/2, Eq. (14) gives T(L /2) = (TB2 +

TB1)/2+ (δTB1 − δTB2)/2. 
This implies that when R1 ∕= R2 and, hence, δTB1 ∕= δTB2, the tem-

perature in the center of the film T(L /2) is not equal to the temperature 
TF = (TB2 − TB1)/2due to the applied Fourier temperature gradient (see 
Fig. 3). Note that the ratio δTB1/δTB2 = R1/R2 is independent of the film 
size and all the temperature profiles T(x) crosses over with the ballistic 
profile at the same point (see Fig. 3). However, the difference δTB1 −

δTB2 =
(TB2 − TB1)(R1 − R2)

R1+R2+N− 1 decreases with increasing system size N, and the 
temperature profile tends to the classical symmetric Fourier profile (see 
Fig. 3). 

The temperature gradient inside the film is given by ∇T = (T(L −

0) − T( + 0))/L, where T(L − 0) = TB2 − δTB2 and T( + 0) = TB1 + δTB1. 
Using Eqs. (10) and (11), we obtain 

∇T =
(TB2 − TB1)

L
N − 1

Reff + N
(15) 

The first multiplier on the right hand side of Eq. (15) represents the 
imposed temperature gradient, while the second multiplier is the non- 
local correction. When N→∞, the non-local correction tends to unity 
and Eq. (15) reduces to the imposed temperature gradient inside the film 
with zero temperature jumps at the boundaries. As the film size N de-
creases, the nonlocal correction and, consequently, the temperature 
gradient inside the film ∇T, Eq. (15), begin to decrease. When N = 1, 
Eq. (15) gives ∇T = 0, i.e. the purely ballistic regime with flat 

Τ−
Τ

/Τ
−Τ

Fig. 2. Nondimensional temperature profiles across a thin film θ(ξ), obtained 
from Eq. (14), as a function of the nondimensional coordinate ξ = x/ Lfor 
different values of the boundary resistances. Thick grey curve corresponds to 
nearly adiabatic right boundary with high resistanceR2→∞, which implies that 
most of the scattering occurs at the boundary with high temperature jump 
δTB2→(TB2 − δTB1), while both the temperature jump at the left boundary and 
the temperature gradient inside the film tend to zero. Solid curve - ballistic- 
diffusive regime with asymmetric temperature profile due to R1 > R2. Dash- 
dotted curve - ballistic-diffusive regime with symmetric temperature profile 
(R1 = R2). Dashed curve – classical Fourier (diffusive) limit N→ ∞. 

Τ−
Τ

/Τ
−Τ

Fig. 3. Nondimensional temperature across a thin film θ(ξ), obtained from Eq. 
(14), as a function of the nondimensional coordinate ξ = x/L at R1/R2 = 2 and 
for different values of the film size N = L/h. Fourier (diffusive) limit N→∞: 
dashed line. Scattering occurs only inside the film and leads to the maximum 
temperature gradient inside the film, while δTB2 = δTB1 = 0. Ballistic limit - 
horizontal lines. Dashed line for R1/R2 = 2; short-dashed line for R1 = R2. 
Scattering occurs only at the boundaries with δTB1 + δTB2 = TB2 − TB1, while 
temperature gradient inside the film is zero. At the intermediate values of the 
system size N (ballistic-diffusive regime) the scattering occurs both at the 
boundaries (nonzero temperature jumps) and inside the film (nonzero tem-
perature gradient inside the film): solid curve R1/(Reff +N) = 0.4 and dash- 
dotted curve R1/(Reff + N) = 0.2. 
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temperature profile is reached. It should be stressed that the flat tem-
perature profile can be reached not only in the ballistic limit with 
decreasing system size N, but also with increasing total boundary 
resistance. Indeed, when Reff →∞, Eq. (13) gives (δTB1 + δTB2)→ (TB2 −

TB1), while Eq. (15) gives ∇T→0, which implies that the scattering oc-
curs mainly at the boundaries, whereas the scattering inside the system 
is relatively small. Thus, at high total boundary resistanceReff → ∞, the 
temperature profile tends to be flat independently of the film size. 

Using Eqs. (3) and (9), we obtain the steady-state heat flux as follows 

q= −
Cv
2

TB2 − TB1

Reff + N
(16) 

When N→∞, Eq. (16) gives q = − Cvh(TB2 − TB1)/2L. Taking into 
account that for 1D case λ = Cvh/2, the last equation represents the 
classical Fourier law q = − λ(TB2 − TB1)/L. In the ballistic N→ 1, Eq. 
(16) gives q = − Cv(TB2 − TB1)/2Reff . For an intermediate value of the 
film size N when the transport is both ballistic and diffusive, it is 
convenient to represent Eq. (16) in the form 

q= −
λ(TB2 − TB1)

L
N

Reff + N
(17) 

The first multiplier on the right hand side of Eq. (17) is the classical 
Fourier law, while the second one is the nonlocal correction, which re-
flects the ballistic component of the heat transport. To analyze the 
dependence of the heat flux q on the film size N, we consider two cases. 
The first one assumes that the imposed temperature gradient (TB2 − TB1)

/Lis kept constant. In such a case Eq. (17) gives 

|q1| =
N

Reff + N
(18)  

where q1 is the heat flux q scaled with λ(TB2 − TB1)/L. The second case 
assumes that the temperature difference between the baths (TB2 − TB1)is 
kept constant. In this case Eq. (17) reduces to 

|q2| =
1

Reff + N
(19)  

where q2 is the heat flux q, scaled with λ(TB2 − TB1)/h. Eqs. (18) and 
(19) demonstrate that the dependence of the heat flux q on the system 
size N is governed by the external conditions. When N→ ∞, the heat flux 
|q1| at constant imposed temperature gradient, Eq. (18), tends to unity, 
whereas the heat flux |q2| at constant temperature difference between 
thermal baths, Eq. (19), tends to zero. As the system size decreases, |q1|

decrease, while |q2| tends to a finite value 1/Reff . Note that when Reff → 
∞both |q1| and |q2| tend to zero as 1/Reff . Fig. 4 shows |q1|, Eq. (18), and 
|q2|, Eq. (19), as functions of the system size for different values of the 
total boundary resistance Reff . 

Eq. (17) allows us to introduce an effective thermal conductivity λeff , 
which virtually keeps the constitutive equation for the heat flux in the 
classical Fourier law q = − λeff (TB2 − TB1)/L, as follows 

λeff

λ
=

1
1 + Reff

/
N

(20) 

Fig. 5 shows the effective thermal conductivity, Eq. (20), as a func-
tion of the system size N for different values of the total boundary 
resistance Reff . In the Fourier limit N→∞, Eq. (20), as expected, gives 
λeff →λ, whereas in the ballistic limit we obtain λeff →λball = λN/ Reff . 

The effective thermal conductivity λeff , Eq. (20), corresponds to the 
Fourier law in terms of the imposed temperature gradient (TB2 − TB1)/

L. However, one can define an effective thermal conductivityλ∇eff , which 
keeps the classical form of the Fourier law in terms of the internal 
temperature gradient ∇T, Eq. (15) [12]. Using Eqs. (15) and (17), we 
obtain 

λ∇eff

λ
=

N
N − 1

(21) 

In the Fourier limit N→∞, the effective thermal conductivity in terms 
of the internal temperature gradient λ∇eff , Eq. (21), as well as the effective 
thermal conductivity in terms of the internal temperature gradient λeff , 
Eq. (20), tend to the bulk value λ. However, they behave differently 
when the film size ℓdecreases, namely, while λeff , Eq. (20), decreases, 
λ∇eff , Eq. (21), increases. The increase of λ∇eff , Eq. (21), with decreasing 
film size keeps a finite value of the heat flux compensating vanishing 
internal temperature gradient, Eq. (15). Note that λ∇eff , Eq. (21), does not 
depend on the boundary resistance Reff , whereas λeff , Eq. (20), depends. 

=

=

Fig. 4. Heat flux |q1| at constant imposed temperature gradient, Eq. (18), and 
heat flux |q2| at constant temperature difference between thermal baths, Eq. 
(19), as functions of the system size N for different values of the total boundary 
resistance Reff - solid and dashed lines, respectively. 

=

=

=

Fig. 5. Effective thermal conductivity λeff , scaled with bulk thermal conduc-
tivity λ, Eq. (20), as a function of the system size N for different values of the 
total boundary resistance Reff (solid lines). Dash-dotted line – effective thermal 
conductivity λEIT , Eq. (23), due to EIT [3,24]. Dashed line - effective thermal 
conductivity kC− P, Eq. (24), obtained by McGaughey et al. [39]. 
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3. Discussion and comparison with other theories 

3.1. Temperature profiles 

We start the discussion by comparison with the MD simulation of 
Tenenbaum et al. [21], which studied 1D nonequilibrium steady-state 
heat conduction between two thermal reservoirs. The method was 
based on the introduction of stochastic boundary conditions and was 
able to simulate high temperature gradients in a region of dense fluids 
ranging from the gas-liquid coexistence line to the freezing line. The 
main result of the MD simulations, namely, the different temperature 
jumps at the right and the left boundaries, corresponds to the prediction 
of the present model, Eqs. 9–11 (compare Fig. 3 in this paper with Fig. 3 
in Ref. [21]). Another manifestation of the asymmetry of the tempera-
ture profile is the difference between the temperatures of the applied 
and obtained gradients at the center of the film, which has been 
observed both in the present model (see Fig. 3) and in the MD simulation 
(see Fig. 3 in Ref. [21]). Moreover, the MD simulation of Tenenbaum 
et al. [21] predicts that the temperature jumps at the boundaries in-
crease linearly with the temperature difference between the thermal 
baths ΔT, and that δTR is always greater than δTL, for a given gradient. 
These results are also in agreement with the present model (see Eqs. (10) 
and (11)). 

Shiomi and Maruyama [22] studied heat conduction of finite-length 
single-walled carbon nanotubes by means of nonequilibrium MD dy-
namics simulations. The Nose–Hoover thermostats with two tuning 
parameters, namely, the length of the temperature-controlled part and 
the relaxation time, have been used. The MD simulations demonstrate 
that the shorter the length of the temperature-controlled part of the 
nanotube, the higher the temperature jumps at the boundaries. More-
over, the calculated temperature profile is asymmetrical - the tempera-
ture jump at the high temperature boundary exceeds the temperature 
jump at the low temperature boundary [22]. The asymmetry increases 
with decreasing temperature-controlled part. For instance, when the 
temperature-controlled part Lcis equal to 0.01L, the temperature jump at 
the low temperature boundary is 5K, whereas at the high temperature 
boundary is 10K, i.e. the temperature jump at the higher temperature 
boundary is twice as much as the temperature jump at the low tem-
perature boundary. The sum of the temperature jumps account for about 
75% of temperature difference between the reservoirs, which is equal to 
20K. 

The MD simulation of Jiang et al. [23] studied the boundary tem-
perature jumps in a graphene nanoribbon consisting of 51 atomic col-
umns. Application of Nośe-Hoover heat baths to columns 2 and 50 with 
temperatures 310 and 290 K, respectively, gives the same values of the 
boundary temperature jumps as in Ref. [22] at Lc = 0.01L. These results 
correspond to present model (compare the dashed curve in Fig. 3 in this 
paper with the blue curve in Fig. 2 of Ref. [22] and with the red dotted 
curve in Fig. 6a of Ref. [23]). 

Recently, using nonequilibrium molecular dynamic (NEMD) simu-
lations, Feng et al. [20] observed the local thermal nonequilibrium be-
tween the ballistic and diffusive phonons, which provides a significant 
additional thermal interfacial resistance mechanism besides phonon 
reflection. The NEMD simulations of Feng et al. [20] demonstrated 
asymmetric temperature profiled in thin films (see, for example, Fig. 4c 
in Ref. [20]). 

3.2. Effective thermal conductivity 

Classical continuous approaches to the heat transport in nano films 
provide the effective (size-dependent) thermal conductivity across a thin 
film as follows [2,3,8,12,38]. 

λε
eff (N)

λ
=

1
1 + 2ε/N

(22)  

ε is a constant corresponding to the efficacy of the boundary thermal 
baths as they couple to the system (coupling parameter). Eq. (20) cor-
responds to Eq. (21) at ε = Reff/2. The Matthiessen rule with allowance 
for the concept of size-dependent (effective) mean free path of energy 
carriers [2], as well as the simples version of the DVM [12], give ε = 1/2 
(see the upper dotted line in Fig. 6). Majumbar [9] obtained ε = 2/3 on 
the basis of the relaxation time approximation to the BTE. Noted that 
this approximation assumes that the distribution function is not too far 
away from equilibrium, i.e. the process occurs under local-equilibrium 
conditions. Strictly speaking, when L ~ h, the ballistic component of 
heat transport begins to play an important role, which implies that there 
is no local equilibrium. This may lead to some error in the effective 
thermal conductivity [9]. 

The FPU-β model for the effective thermal conductivity in nano film 
[8,37] implies that the coupling parameter ε vary from ε = 0.8 for the 
thermostats adopted in Ref. [37] (demons), to ε = 2 for Nose-Hoover 
thermostats [8,37] and to ε = 40for stochastic reservoirs [8]. The 
transition of thermal conductivity from the ballistic to the diffusive 
regime can be also approximated through a Landauer-like approach, 
which gives ε = 1/π [38]. Extended irreversible thermodynamics, which 
describes local nonequilibrium systems by introducing additional state 
variables, such as heat flux, gives the following expression for the 
size-dependent thermal conductivity for 1D systems [3,24]. 

λEIT

(

N
)

=
3λN2

4π2

(
2π

N arctan(2π/N)
− 1

)

(23) 

Fig. 5 shows λEIT, Eq. (23), as a function of N (see dash-dotted line). 
McGaughey et al. [39] calculated the in-plane and cross-plane effective 
thermal conductivities by including the mode-dependence of the 
phonon lifetimes resulting from phonon-phonon and phonon-boundary 
scattering. Using the Matthiessen rule and the Debye approximation for 
the phonon dispersion, which assumes a single acoustic branch, the 
cross-plane effective thermal conductivity takes the form [39]. 

kC− P(ℓ)
λ

=
6
7
+

3
14

ℓ −
3
7
ℓ2

+
3
7

ℓ3 ln
(

1+
1
ℓ′

)

−
6

7
̅̅̅
ℓ

√ arctan
̅̅̅
ℓ

√
(24) 

Fig. 6. Effective thermal conductivityλeff , Eq. (20), as a function of film 
thickness L for different values of h. The dashed line is the ballistic limit λball =

λL/hReff , solid lines represent λeff calculated with hReff = 720nm, hReff =

110nm, and hReff = 20nm chosen to match existing experimental data for 
suspended graphene, supported graphene, and graphene nanoribbons, respec-
tively [10]. 
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where ℓ is a non-dimensional length defined as ℓ = 3kBvacL/ 2λΩ, where 
Ω is the primitive cell volume, vacis the acoustic velocity, kBis the 
Boltzmann constant. For silicon, which has a diamond structure, the 
primitive cell volume is a3/4, where a is the lattice constant. Taking into 
account that for 1D system λ = Cvh/2, ℓcan be expressed as N = C∞L/
2Ch , where C∞ is the high-temperature harmonic specific heat [39]. 
Assuming that C∞ ≈ C, one obtains ℓ ≈ N/2. Fig. 5 shows kC− P, Eq. (24), 
as a function of N (see dashed line). 

The effective thermal conductivityλeff , Eq. (20), is shown in Fig. 6 as 
a function of the film thickness L for different values of hReff : hReff =

720nm, hReff = 110nm, and hReff = 20nm chosen to match existing 
experimental data for suspended graphene, supported graphene, and 
graphene nanoribbons, respectively [10]. The dashed line is the ballistic 
limit λball = λL/hReff , which is obtained from Eq. (20) in the limit small 
film thickness. The predicted effective thermal conductivity λeff , Eq. 
(20), is consistent with the classical continuous theoretical approaches, 
Eqs.22–24, (see Fig. 5) and available experimental data (see Fig. 6). 

4. Conclusion 

The discrete variable model takes into account the fundamental role 
of the time and length scales in the heat transport. This is particularly 
important for the performance evaluation of modern thermal nano 
systems and microdevices, which usually operate under extreme con-
ditions. The model is used to study heat conduction across a thin film 
between two thermal baths, which have different thermal boundary 
resistances with the film. The effective thermal conductivities, the 
boundary temperature jumps, the steady-state heat flux, the internal 
temperature gradient are obtained analytically and analyzed as func-
tions of the film size and boundary resistances. As the system size de-
creases, all these parameters demonstrate the crossover from diffusive to 
ballistic behavior. Moreover, as the total boundary resistance increases, 
the temperature profile inside the film tends to be flat, while the total 
boundary temperature jump reaches the imposed temperature differ-
ence between the baths. In such a case the scattering inside the film is 
relatively small in comparison with the scattering at the boundaries. The 
predicted effective thermal conductivity is consistent with the classical 
continuous treatments and available experimental data. The results are 
given in a relatively simple analytical form and can be easily imple-
mented for practical experimental conditions or used as an effective tool 
for rapid calculations to make more elaborated approaches less 
computationally expensive. 
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